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Abstract—Two high-dynamic-range receiver subsystems for use in air-

borne radar fire control and traefdng applications are described. The

X-band dnal-channel monopulse tracking receiver operates at 9.36+0.290

GHx with a 6 dB NF and a linear instantaneous dynamic range of 42 dB. A

totaf of SO dB of RF and IF gain control is programmable with less than

& 15° phase and + 1 dB mupfitude tracking errors.

The Doppler radar receiver operating at 9.3+0.15 GHz has a 4.6 dB NF

with > SO dB of instantaneous dynamic range. An 18 dB sensitivity time

control (STC) circuit and a 60 dB dump attenuator allow close-in target

reeeption.

I. INTRODUCTION

R ADAR RECEIVERS used for tracking and fire con-

trol in airborne applications require high-amplitude

dynamic range capability to linearly process the target

returns from short ranges (500 ft), as well as long dis-

tances, in the presence of clutter.

To achieve high dynamic range, a low-noise preamplifier
is used at the antenna output, preceded by a pro-

grammable digital or analog attenuator which reduces

strong signal amplitudes, for linear operation. Additional

IF programmable attenuation can be used to extend the

dynamic range. In a monopulse system which uses two-

channel RF reception, good gain and phase tracking over

attenuation are required for accurate target tracking. For

single-channel pulsed Doppler receivers, a high-dynamic-

range receiver is necessary to ensure discriminating the

desired target returns from main-beam and side-lobe clut-

ter returns and from distortion products. A sensitivity time

control (STC) whereby the receiver gain is varied as a

function ~f time (range), requires extremely rapid attenua-

tor switching and good tracking over the attenuator dy-

namic range.

The rnonopulse system described uses this fast auto-

matic gain control (AGC) approach using 80 dB of pro-

grammable attenuation to achieve extremely high dynamic

range.

A photograph of the complete X-band monopulse re-

ceiver is given in Fig. 1.

A block diagram of the monopulse receiver appears in

Fig. 2. The two-channel receiver is capable of operating in
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Fig. 1. Monopulse radar receiver.

a radar system with the following modes of operation:

terrain following, terrain avoidance, ground mapping,

weather mapping, and beacon reception. Although a

monopulse tracker can require a sum channel and two

difference channels, one in azimuth and the other in eleva-

tion, the latter are multiplexed for two-channel operation.

The monopulse receiver is used with an amplitude-sensing

four-quadrant antenna system. Each of the antenna feeds

produces a pattern which is displaced from the anterma

boresi@t axis. The sum and difference patterns intersect

on the boresi@t axis, so that subtracting the two antenna

signals results in a sharp amplitude n~ [1], [2]. The sum

signal is hard limited and is used to drive the reference

port of the coherent sum detector and the difference

channel detector [3].

The phases of the sum and difference channels are

compared in the difference, A, coherent detector. The

polarity of the A detector output changes at boresight, so
that above boresight a positive error signal is generated

and below boresight a negative error is obtained. The A

coherent detector produces an amplitude output propor-

tionate to the off-axis displacement. Normalization for

range and target size is accomplished by the RF and IF

step attenuators. The coherently detected sum signals are

used to drive the programmable attenuators to produce a

constant sum video signal and at the same time normalize

the difference video signals. The attenuators match in

phase over the full attenuation range so that little error is
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Fig. 3. Simplified block diagram of the LNA/attenuator.

introduced. The use of coherent detectors allows the band-

width of the system to be set following the video ampli-

fiers; the video amplifier bandwidth is set at 5 MHz. The

radar processor control circuits are set to correspond to the

pulse width selected.

The monopulse receiver assembly contains a high-power

circulator, two channel transmit/receive limiter (TRL)

tubes, down-converters, programmable RF and IF attenu-

ators, coherent detectors, AFC circuitry, and a log sum

video channel with variable bandwidth. The receiver oper-

ates at 9.36 GHz, is frequency agile +60 MHz at a 50 Hz

rate, and operates over pulse widths of 0.3 to 4.0 p.s. To

achieve both a maximum sensitivity ( <6 dB NF) and a

high operational dynamic range (+7 dBm max input), a

LNA and programmable attenuator combination are used

at the receiver front end [4]. During the transmit period

the TRL tube ionizes and shorts the high-power pulses to

protect the receiver. Up to 40 dB of attenuation in 10 dB

steps is available at the receiver front end. A total maxi-

mum gain of 25 dB with 3.40 dB NF is achieved in the

preamp assembly. It utilizes three FET amplifier stages

cascaded with three p-i-n diode attenuation stages as shown

in the schematic of Fig. 3. The circuit diagram of an

attenuator stage is shown in Fig. 4. The measured perfor-

14

‘-----%-+””
F*+11

TO DRIVER

Fig. 4. Circuit diagram for the attenuator stage.

mance of the front end LNA/attenuator assembly is given

in Table I. The measured performance of the front end

LNA/attenuator gives less than ~ 7° of phase tracking

and +0.75 dB of gain tracking over the full attenuation
range.

An additional 40 dB of programmable attenuation is

produced in the 60 MHz IF amplifiers following the band-

pass filters. Since the outputs of the difference and sum

videos are sampled during pulse widths of as little as 0.3

ps, the programmable attenuators must settle in less than
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TABLE I

MEASURED PERFORMANCE FOR LNA/AttenUatOr
—.. -—.....——

PARAMETER

Frequency Range

Small Signal Gain

Attenuator

Gain F1 atness vs. Frequency

Attenuation Accuracy

Attenuation Select

Gain Tracking Between
Units of a Matched Pair

Phase Tracking Between
Units of a Natched Pair

Input/Output vSWR

Power Output at 1 dB Compression

No?se Figure

Attenuation Switching Time

Operating Temperature

SPECIFICATION

9.36 GHz ~ 300 MHz

24 dBJl dB @ 25° C

40 dB in 10 dB steps

a) No Attenuation + .25 dB
b) Any Attenuation ~ .5 dB

.5 dB 10 dB stepL

+ 1.0 dB 20 dB step—

+ l.z5 dB 30 dB step

+ 2.0 dB 40 dB step—

3 Bit TTL

a) No Attenuation + .5 dB
b) Any Attenuation ~ .75 dB

a) No Attenuation ~ 5°
b) Any Attenuation ~ 7°

1.5:1 Max

+12 dBm Nio

3.6 dB IIax !3 25° C
4.5 dB i!ax @ 71°C

50 nanoseconds flax

-54° C to + 30” C

Lo within 1 dB

TABLE II

MEASURED PERFORMANCE FOR IF ATTENUATOR

Frequency Range

Insertion Loss

RF Power

Impedance

VSWR (Al 1 States)

Attenuation States

Attenuation Accuracy

Switching Speed

Switching Transients

Control

Amplitude Tracking
(Al 1 States)

Phase Tracking
(Al 1 States)

50 MHz to 70 Mhz

4.0 dB, Maximum

TO +10 dBm Input

50 Q , Nominal

1.35 to 1, Maximum

2, 4, 8, 16, 16 d8

~.50 dB ~5% of Value

50 nsec, Maximum

25 mV Peak, Maximum
OnV after 100 nsec

Via 5 line TTL, Logic
“l” = Attenuation

.5 dB, Maximum

4“ , Maximum

50 ns to prevent switching spikes from obscuring the true

video signals. The programmable IF attenuator is a special

design utilizing FET switches for each bit to minimize

switching transients. The overall phase and amplitude

tracking of the IF attenuator is better than 4° and 0.5 dB

over the attenuation range and operating temperature range

as is given in Table II. A built-in automatic frequency

TABLE III

SYSTEM AFC LooP PARAMETERS
—._. _ .

LO FREQUENCY 9.29 GHz

FREQ. SLEWING 120 MHz at 50 Hz Rate

CAPTURERANGE : 15 NHz

FREQ. SETTLING TIME TO WITHIN 100 KHz .3 Y sec

HOLOING TIME TO WITHIN 250 KHz 4 msec

IF FREQUENCY 60 MHz

IF FREQUENCY ACCURACY + 250 KHz
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Fig. 5. AFC loop analysis.

control (AFC) circuit maintains the IF at 60 MHz within

0.5 MHz as the magnetron frequency slews +60 MHz at a

50 Hz rate. The AFC is designed so as to optimize ‘the

accuracy at the different system pulse widths.

II. AUTOMATIC FREQUENCY CONTROL

An AFC circuit is normally used in radars incorporating
magnetron transmitters to eliminate slow frequency drifts

due to temperature, humidity, altitude, VSWR, turn-on

warm-up, power supply variation, and aging. For these

effects a slow-acting AFC is sufficient, averaging over

many transmit pulses for corrections.

Many airborne monopulse radars use a pulsed mag-

netron, whose frequency can be modulated at a low fre-

quency rate, 100 Hz, typically over a 100 MHz excursion.

The AFC circuit is used to lock an internal VCO to the

frequency of the magnetron at each pulse with an offset

equal to the receiver IF center frequency. To accomplish

this the magnetron frequency must be captured during
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Fig. 6. Block diagrenr of AFC circuit

each- transmit pulse interval, <0.3 ps, and held closely

during the interpulse period (up to 4 ins).

An instantaneous AFC-type loop is used in which the

error correction is completed before the pulse has ended.

Extremely wide bandwidths are required in the discrimina-

tor and amplifiers in order for negligible delay to be

obtained in these elements. The discriminator has a 30

MHz bandwidth, while the shaping amplifier bandwidth is

better than 20 MHz.

The capture range of the loop must be designed to be

broad enough to accommodate the expected maximum

frequency change in the interpulse period resulting from

the 100 MHz frequency slewing of the magnetron.

The capture range is directly dependent on the band-

width of the discriminator curve and is limited by the

desired frequency accuracy and the IF operating fre-

quency. Narrower discriminator bandwidths result in

tighter accuracy specifications but smaller capture ranges.

The performance parameters of the AFC loop required

by the system are shown in Table III.

An analysis of the AFC loop during the sampling inter-

val appears in Fig. 5 along with the calculation of the

required loop bandwidth.

The AFC loop is a first-order loop using a fast active

integrator to achieve the required settling time. Any addi-

tional time delays or lags in the circuit must be minimized

to keep frequency ringing low. The sample and hold cir-

cuits are designed for wide bandwidth and low droop

during the interpulse period. The 60 MHz IF frequency

accuracy is determined by the discriminator crossover ac-

curacy and the temperature stability. Careful design is

required to attain the discriminator bandwidth for the

7SHAPING

AMPLIFIER

TABLE IV

X-BAND MONOPULSE RECEIVER MEASUREDPERFORMANCE

Operating lFrequency
Frequency Agi 1ity

Pulsewidth
PRF

Single Sideband Noise

Figure

Image Rejection
Linear Instantaneous Dynamic

Range (8 MHz IF BW)
Log Channel Instantaneous

Dynamic I/ange
Gain Control
Front End

IF

Phase Tracking Between
Sum and Difference Channel

Arnpl itude Tracking Between
Sum and Difference Channels

Supurious Signals
Two Tone, ‘l’hi rd Order

Responses (-30 d8m Input)

9.36 + .290 GHz
+ 60 ~Hz at
“!iO Hz Rate
.3 to 4.0 usec
2000 PPS to 250

PPs
6 dB at 20” C
6.5 d8 at 71° C
20 dB
42 dB

80 dB

40 dB in 10 dB
Steps

40dB in 2d8
Steps

~ 15” Over -54
to +71° C &
+ 60 MHz of
renter Freq.

~ 1 dB over all
Attenuation

Ranges

-60 dBc
-45 dBc

required capture range and the 60 MHz IF offset fre-

quency accuracy of 3250 kHz over the operating tempera-

ture.

111. AFC LooP DESCRIPTION

A block diagram of the AFC looIp appears in Fig. 6.

A sample of the magnetron frequency is mixed with the

internal LO to produce an IF frequency centered at 60
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Fig. 7. Fire control radar microwave assembly block diagram.

MHz. After amplification, the signal is limited to remove

amplitude fluctuations and then applied to an FM discrim-

inator. The discriminator consists of two tuned circuits,

one peaked at 90 MHz (30+60 MHz), the other tuned to

30 MHz (60 – 30 MHz).

The detected signal is applied differentially to the loop

filter to produce a discriminator S curve centered at 60

MHz. ,The loop acts to set the pulses out of each tuned

circuit at equal levels during the nulling process. The loop

filter output feeds a shaping amplifier which acts to lin-

earize the voltage versus frequency curve of the VCO. The

shaping amplifier drives the varactor input of the VCO

which completes the loop. The sample-and-hold circuit is

used to hold the loop null point during the time that input

pulses are absent. This requires a fast-acting sampler along

with a low-leakage hold circuit. Note that these require-

ments are conflicting and will have to be carefully bal-

anced. The lock detector functions by comparing the pulse

levels at the detected discriminator output for equality.

IV. MONOPULSE MEASURED PERFORMANCE

The measured performance of the integrated X-band

monopulse receiver is presented in Table IV [5].

An overall system noise figure of 6 dB was obtained at

20”C, rising to 6.5 dB at 71 “C. A linear instantaneous

dynamic range of 42 dB with 80 dB of programmable gain

was achieved with low two-tone intermodulation products

(– 45 dBc) and spurious responses ( – 60 dBc). Total phase

tracking between channels over all attenuation settings,

over a temperature range of – 54° to +710 C, and over a

120 MHz frequency band was + 15°. Total amplitude

tracking over the same conditions was + 1 dB.

v.

Fig. 8. Doppler radar assembly.

DOPPLER RADAR DESCRIPTION

The elements of the X-band Doppler radar subsystem

are shown in the block diagram of Fig. 7. They include a

fast recovery multisection TRL tube and a precise STC

circuit for range-controlled attenuation. Other components

are a high-power low-loss circulator, a low-noise FET

amplifier, an image rejection mixer, and an AFC circuit
for frequency lock of the LO onto the magnetron transmit

pulse.

A photograph of the completed integrated subassembly

appears in Fig. 8. The combination of the low-noise GaAs

FET amplifier preceding the image rejection mixer im-

proves the single-sideband (SSB) noise figure without de-

grading the overall receiver dynamic range. A time-sensi-

tivity attenuator (STC) preceding the low-noise amplifier

attenuates strong, close-in radar returns by a minimum of

18 dB. This prevents overloading of the receiver front end
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TABLE VI
TRL/STC PERFORMANCE

INPUT POWER 140 KM Peak

INSERTION LOSS <1.2 dB
(OFF CONOITION)

RECOVERYTIME
(To- 10dB) < .8 II sec

INSERTION LOSS
MAX

>53 dB

TABLE WI
DOPPLER RADAR RECEIVER MEASURED PERFORMANCE

Operating Frequency 9.3: .15 GHz

Fig. 9. S.T.C. timing.
Pulse Width .4 + .04 psec

TABLE V

FOUR-PORT CIRCULATOR PERFORMANCE

————— ,

OPERATINGFREQUENCY 9.3~ .15 GHz

POWER 140KW Peak

RF VS!dR
PORT 1 :1.15 (with TRL short

circuited and
a 2:1 load VSWR
on Port 2)

PORT 2 <1.2:1—

PORT 3 :2:1

INSERTION LOSS

PORT 1 TO PORT 2 .B d8 max

for target returns as close as 500 ft and maintains an

instantaneous dynamic range of 80 dB.

The receiver gain reduction curve (STC) versus time is

such that at 1 ps after pulse transmission a minimum of 18

dB of attenuation is provided. It then slopes linearly with

an accuracy of + 3 dB to 14 dB attenuation at 3.0 ps, and

to O dB attenuation at 5.0 ps. The receiver gain reduction

curve (STC) versus time is given in Fig, 9.

For low-noise performance, the losses of the high-power

circulator and the TRL/STC are minimized, as shown in

the component performance specifications of Tables V and

VI. A minimum of 60 dB of dump attenuation at the 60

MHz IF output is provided during the transmit pulse. This
prevents any possible overloading by transmit transients of

the radar’s 80 dB dynamic range signal processor.

VI. DOPPLER MEASURED PERFORMANCE

The measured performance of the complete Doppler

radar receiver subsystems is presented in Table VII.
At maximum gain (no STC) an overall system noise

figure of 4.6 dB was met at 25°C.

Instantaneous dynamic range of 80 dB with – 35 dBc

maximum spurious level was measured. The fast STC and

quick recovery of the TRL tube allow reception of received

signals within 1 ps of the start of the transmitted pulse.

PRF 2500 PPS or

1500 PPS

Frequency Agi 1ity ~ 50 MHz at
100 Hz Rate

Received Signal Levels -103.7 dBm to
-10 dBm

Noise Figure 4.6 dB at 25°c

Instantaneous Oynami c Range ~ 80 dB

Spurious Signals > 35 dBc

Image Rejection 15 dB Minimum

Gain 22 dB nominal

STC 18 dB 1 psec
after transmit
pul se; decreases
linearily to
O dB in 5.0 usec

Oump Attenuation >60 dB
Fast Recovery

VII. CONCLIJSION

For monopulse radar, the fast AGC approach utilizing

RF and IF programmable attenua tors with coherent detec-

tors can provide high-dynamic-rimge monopulse receiver

performance. Careful design of the attenuators for rapid

switching and tracking in phase and amplitude over all

attenuation states and with temperature is essential for

accurate system nulls.

For pulsed Doppler radar, close-in target tracking ‘was

achieved using a fast recovery TRL and front-end S,TC

circuit. Accurate control of the Itime-varying gain allows

optimum performance of the radar in the presence of

strong returns and over a high instantaneous dynatnic

range.
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